
INTRODUCTION

PARKINSON’S DISEASE (PD) is a common neurodegenera-
tive disorder characterized by the progressive and selec-

tive loss of dopaminergic (DA) neurons in the substantia
nigra (SN) pars compacta (28), where >90% of PD cases
are sporadic with unknown etiology (15). Epidemiological
studies indicate that rural residence, farming, well water
drinking, and exposure to agricultural chemicals are associ-
ated with an increased risk of developing PD (18, 31, 35,
36). In addition, exposure to several classes of environmen-
tal toxins, such as paraquat (PQ; 1,1�-dimethyl-4,4�-bypyri-

dinium), maneb, rotenone, and dieldrin, has resulted in DA
neurotoxicity in animal models (20). Across this list of en-
vironmental neurotoxins, the common theme governing the
selective DA neurotoxicity is the generation of oxidative
stress. The following study sought to elucidate the source
and the mechanism of PQ-induced oxidative stress at low
concentrations (up to 1 µM) and the consequent DA neuro-
toxicity.

Initially, the herbicide PQ was speculated to be toxic to DA
neurons because of its structural similarity to 1-methyl-4-
phenylpyridinium (MPP+), the active metabolite of 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the well known
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ABSTRACT

The herbicide paraquat (PQ) has been implicated as a potential risk factor for the development of Parkinson’s
disease. In this study, PQ (0.5–1 µM) was shown to be selectively toxic to dopaminergic (DA) neurons through
the activation of microglial NADPH oxidase and the generation of superoxide. Neuron-glia cultures exposed to
PQ exhibited a decrease in DA uptake and a decline in the number of tyrosine hydroxylase-immunoreactive
cells. The selectivity of PQ for DA neurons was confirmed when PQ failed to alter �-aminobutyric acid uptake
in neuron-glia cultures. Microglia-depleted cultures exposed to 1 µM PQ failed to demonstrate a reduction in
DA uptake, identifying microglia as the critical cell type mediating PQ neurotoxicity. Neuron-glia cultures
treated with PQ failed to generate tumor necrosis factor-� and nitric oxide. However, microglia-enriched cul-
tures exposed to PQ produced extracellular superoxide, supporting the notion that microglia are a source of
PQ-derived oxidative stress. Neuron-glia cultures from NADPH oxidase-deficient (PHOX�/�) mice, which lack
the functional catalytic subunit of NADPH oxidase and are unable to produce the respiratory burst, failed to
show neurotoxicity in response to PQ, in contrast to PHOX+/+ mice. Here we report a novel mechanism of PQ-
induced oxidative stress, where at lower doses, the indirect insult generated from microglial NADPH oxidase is
the essential factor mediating DA neurotoxicity. Antioxid. Redox Signal. 7, 654–661.
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parkinsonism-inducing agent discovered in synthetic heroin
(16). Indeed, epidemiological studies have shown a strong
correlation between the incidence of PD and exposure to PQ
(18, 34). Studies using animal models have also supported
the role of PQ and DA cell death, where intranigral injection
of PQ induced dopamine (DA) depletion in the striatum, loss
of DA neurons, glial reaction in the SN, and behavior abnor-
mality (17). The effect of systemically administered PQ on
the nigrostriatal system has been less consistent. Some stud-
ies have reported that PQ failed to damage DA neurons in SN
and failed to deplete DA in striatum (29, 45, 46). However,
more studies have indicated that systemic PQ exposure in
vivo results in the selective degeneration of DA neurons in
SN, DA depletion in striatum, and behavior abnormality (2,
6, 25, 26, 38, 39). Animals exposed to PQ combined with
other pesticides also show selective DA neurotoxicity in the
SN and behavioral deficits (1, 43). The abilities of PQ to in-
duce oxidative stress in the brain (41, 47), to be taken up by
DA neurons through the DA transporter (37, 38), and to up-
regulate �-synuclein expression and facilitate its fibrillation
(25, 44) may contribute to its DA neurotoxicity. However, the
detailed mechanism governing PQ-induced DA neurotoxicity
remains unclear.

There is increasing evidence supporting the association of
inflammation and PD (20, 27), where microglia have been
identified as the pivotal cell type governing inflammation-
mediated neurodegeneration (20). Microglia are the resident
immune cells of the central nervous system and contribute to
neurodegeneration through the release of a variety of neuro-
toxic factors, including cytokines, free radicals, inflamma-
tory prostaglandins, and fatty acid metabolites (17, 20, 24,
26, 42). Previous studies have observed a glial response in the
midbrain of animals exposed to PQ (17, 26). However, the
specific role of inflammation in PQ-induced DA neurotoxic-
ity has yet to be investigated.

In this study, selective DA neurotoxicity was observed
in rat and mouse mesencephalic neuron-glia cultures exposed
to low (up to 1 µM) concentrations of PQ. Here, we show that
PQ-induced neurotoxicity was mediated through the presence
of microglia and the activation of NADPH oxidase, which re-
sulted in the production of the extracellular reactive oxygen
species (ROS) responsible for DA neurotoxicity.

MATERIALS AND METHODS

Animals

All animals were treated in strict accordance with the
National Institutes of Health (Bethesda, MD, U.S.A.) Guide
for Humane Care and Use of Laboratory Animals. Timed
pregnant (gestational day 14) adult female Fischer 344 rats
were purchased from Charles River Laboratories (Raleigh,
NC, U.S.A.). Eight-week-old male and female C57BL/6J
(PHOX+/+) and B6.129S6-Cybbtm1Din (PHOX�/�) mice were
obtained from Jackson Laboratory (Bar Harbor, ME, U.S.A.)
and maintained in a strict pathogen-free environment. Breed-
ing of the mice was designed to achieve accurate timed preg-
nancy ± 0.5 days. The PHOX�/� mice lack the functional
catalytic subunit of the NADPH oxidase complex, gp91. Be-
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cause the PHOX�/� mutation is maintained in the C57BL
background, the C57BL/6J (PHOX+/+) mice were used as
control animals.

Reagents

Lipopolysaccharide (LPS; strain O111:B4) was purchased
from Calbiochem (San Diego, CA, U.S.A.). Cell culture in-
gredients were obtained from Life Technologies (Grand Is-
land, NY, U.S.A.). [3H]DA (28 Ci/mmol) and �-[2,3-
3H]aminobutyric acid (GABA; 81 Ci/mmol) were purchased
from NEN Life Science (Boston, MA, U.S.A.). The poly-
clonal antibody against tyrosine hydroxylase (TH) was a kind
gift from Dr. John Reinhard of Glaxo Smith Kline (Research
Triangle Park, NC, U.S.A.). The monoclonal antibody raised
against the CR3 compliment receptor (OX42) was obtained
from Pharmingen (San Diego, CA, U.S.A.). The biotinylated
horse anti-mouse and goat anti-rabbit secondary antibodies
were purchased from Vector Laboratories (Burlingame, CA,
U.S.A.). WST-1 was purchased from Dojindo Laboratories
(Gaithersburg, MD, U.S.A.). Tumor necrosis factor-� (TNF�)
enzyme-linked immunosorbent assay (ELISA) kits were pur-
chased from R&D Systems Inc. (Minneapolis, MN, U.S.A.).
All other reagents came from Sigma–Aldrich Chemical Co.
(St. Louis, MO, U.S.A.).

Mesencephalic neuron-glia cultures

Rat and mouse ventral mesencephalic neuron-glia cultures
were prepared using a previously described protocol (22). In
brief, mesencephalic tissues were dissected from embryonic
day 14 Fischer 344 rats and PHOX+/+ or PHOX�/� mice. Cells
were dissociated via gentle mechanical trituration in mini-
mum essential medium, immediately seeded (5 � 105/well) in
poly-D-lysine (20 µg/ml) precoated 24-well plates, and main-
tained at 37°C in a humidified atmosphere of 5% CO2 and
95% air. Cells were seeded in maintenance medium and
treated with the treatment medium described previously (22).
Three days after seeding, the cells were replenished with 0.5
ml of fresh maintenance medium. Cultures were treated 7
days after seeding.

Microglia-enriched cultures

Primary mixed microglia cultures were prepared from the
whole brains of 1-day-old Fischer 344 rat pups, following the
procedure described previously (23). Two weeks after seeding
when the cells reached confluence, microglia were separated
from astrocytes by shaking the flasks for 5 h at 150 rpm and
replated at 1 � 105 in a 96-well plate. Enriched microglia
were treated 24 h after seeding.

Mesencephalic microglia-depleted cultures

Microglia were depleted from mesencephalic neuron-glia
cultures by the addition of 2 mM L-leucine methyl ester to the
cultures 24 h after seeding. The cultures were exposed to L-
leucine methyl ester for 72 h. Microglia-depleted cultures
stained with OX-42 antibody showed <0.1% microglia.
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Uptake assays (DA and GABA)

The DA and GABA uptake assays were performed as
previously reported (8). In brief, after rinsing with warm
Krebs–Ringer buffer, cultures were incubated for 20 min at
37°C with either 5 µM [3H]GABA or 1 µM [3H]DA. After in-
cubation, cells were rinsed three times with 1 ml/well ice-
cold Krebs–Ringer buffer, then lysed with 0.5 ml/well 1M
NaOH, and mixed with 15 ml of scintillation fluid. Radioac-
tivity was measured on a scintillation counter, where specific
[3H]GABA or [3H]DA uptake was calculated by subtracting
the mazindole or the NO-711 and �-alanine counts from the
wells without the uptake inhibitors.

Immunostaining

Immunocytochemistry was performed using the condi-
tions specified previously (21). DA neurons were identified
by staining with the polyclonal antibody against TH. Mi-
croglia were stained with the monoclonal antibody raised
against the CR3 receptor, OX-42. To quantify cell numbers,
nine representative areas per well in the 24-well plate were
counted under the microscope at 100� magnification by
three individuals. The average of these scores was reported.

Superoxide assay

Extracellular superoxide (O2
•�) production from microglia

was determined as reported previously (32) by measuring the
superoxide dismutase (SOD)-inhibitable reduction of tetra-
zolium salt, WST-1 (19, 30, 40). In brief, immediately before
treatment, enriched microglia were washed twice with Hanks’
balanced salt solution (HBSS). To each well, 100 µl of HBSS
with or without SOD (600 U/ml), 50 µl of vehicle, PQ, or LPS,
and 50 µl of WST-1 (1 mM) in HBSS were added. The cultures
were incubated for 30 min at 37°C, and the absorbance at 450
nm was read with a SpectraMax Plus microplate spectropho-
tometer (Molecular Devices, Sunnyvale, CA, U.S.A.). The
amount of SOD-inhibitable O2

•� was calculated and expressed
as percentage of vehicle-treated control cultures. Cell-free ex-
periments determined that PQ treatment alone did not affect
absorbance.

TNF� assay

The production of TNF� was measured with a commercial
ELISA kit from R&D Systems, as described previously (21).

Nitrite assay

As an indicator of nitric oxide production, the amount of
nitrite accumulated in culture supernatant was determined
with a colorimetric assay using Griess reagent [1% sulfanil-
amide, 2.5% H3PO4, 0.1% N-(1-naphthyl)ethylenediamine di-
hydrochloride] (11), as previously reported (21).

Statistical analysis

The data are expressed as the means ± SEM, and statisti-
cal significance was assessed with an analysis of variance
followed by Bonferroni’s t test. A value of p < 0.05 was con-
sidered statistically significant.
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RESULTS

PQ (0.5–1 µM) is toxic to DA neurons

The DA neurotoxicity of PQ was measured in rat mesen-
cephalic neuron-glia cultures. The ability of cells to take up
[3H]DA was measured to assess the effect of PQ on DA neu-
ronal function. Exposure of neuron-glia cultures to PQ re-
sulted in a significant (p < 0.01) and dose-dependent reduc-
tion in DA uptake (Fig. 1A), where 0.5 µM and 1 µM PQ
caused 24% and 37% loss in DA neuronal function, respec-
tively. To investigate the DA cell loss induced by PQ, neu-
ron-glia cultures were exposed to PQ and stained with
the TH antibody, and the number of TH-immunoreactive
neurons was counted. PQ decreased the number of TH-
immunoreactive neurons in a dose-dependent manner, with a
36% decrease in the cultures treated with 1 µM PQ (p < 0.01)
(Fig. 1B). In addition to the reduction in cell numbers, TH-
immunoreactive neurons in PQ-treated cultures showed a
less extensive dendritic network compared with those in con-
trol cultures (Fig. 1C).

PQ neurotoxicity is selective for DA neurons

To examine the selectivity of PQ neurotoxicity,
[3H]GABA uptake assay was performed to assess the function
of GABAergic neurons in the cultures exposed to PQ. Figure
2 demonstrates that only DA uptake was reduced signifi-
cantly (p < 0.01) by the addition of PQ to neuron-glia cul-
tures, whereas GABA uptake remained unaffected (p > 0.05).
LPS was used as a positive control for microglia activation
and selective DA neurotoxicity (9).

Microglia mediate PQ-induced DA neurotoxicity

To investigate the role of microglia in PQ-induced DA
neurotoxicity, [3H]DA uptake was compared in microglia-
depleted cultures and neuron-glia cultures. Higher doses
of PQ (4 µM and above) showed neurotoxicity in microglia-
depleted cultures (data not shown), consistent with previous
studies suggesting direct DA toxicity (39). However, whereas
DA uptake was decreased in the neuron-glia culture exposed
to 1 µM PQ, there was no toxicity in microglia-depleted
cultures (p < 0.05) (Fig. 3), suggesting the critical role of
microglia in low-dose PQ neurotoxocity. LPS was used
as a positive control for microglia-mediated DA neurotox-
icity (9).

PQ induces extracellular O2
•� production

by microglia

It has been well documented that the activation of mi-
croglia and the consequent production of neurotoxic factors,
including TNF�, nitric oxide, and ROS, have been linked to
DA neurotoxicity (33, 37, 38). In an effort to discern the
mechanism through which microglia exposed to PQ exerted
neurotoxicity, the supernatant from PQ-treated neuron-glia
cultures was tested for the presence of classic proinflamma-
tory factors. Analysis of supernatant collected at 3 h, 6 h, 12
h, 24 h, 4 days, and 7 days post PQ treatment in neuron-glia
cultures revealed that no TNF� or nitrite (indicative of nitric
oxide production) was produced (data not shown). However,
PQ did induce a dose-dependent increase in extracellular
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FIG. 1. PQ is toxic to DA neurons. Mesencephalic midbrain neuron-glia cultures were treated with either vehicle, 0.5 µM PQ,
or 1 µM PQ. (A) DA neurotoxicity was measured at 6–7 days post treatment using the [3H]DA uptake assay. (B) DA cell death was
determined at 6–7 days post treatment with immunocytochemical staining by using the TH antibody and counting the number of
TH-positive neurons present. The data are expressed as the percentage of the control cultures and are the means ± SEM from three
independent experiments. An asterisk indicates a significant difference (p < 0.01) compared with control. (C) Cell morphology of
TH-immunoreactive neurons in the neuron–glia cultures. The images shown are representative of three independent experiments.

FIG. 2. PQ neurotoxicity is selective for DA neurons. Mid-
brain neuron-glia cultures were treated with either vehicle, 5
ng/ml LPS, or 1 µM PQ. LPS was used as a positive control for
selective DA neurotoxicity. (A) DA neurotoxicity and GABA
neurotoxicity were measured at 6–7 days post treatment by
using the [3H]DA uptake and [3H]GABA uptake assays, re-
spectively. The data are expressed as the percentage of the con-
trol cultures and are the means ± SEM from three independent
experiments. An asterisk indicates a significant difference (p <
0.01) compared with control.

FIG. 3. Microglia mediate DA neurotoxicity induced by 1
µM PQ. Mesencephalic neuron-glia cultures and microglia-
depleted cultures were treated with either vehicle, 5 ng/ml LPS,
or 1 µM PQ. LPS was used as a positive control for microglia-
mediated DA neurotoxicity. DA neurotoxicity was measured at
6–7 days post treatment by using the [3H]DA uptake assay. The
data are expressed as the percentage of the control cultures and
are the means ± SEM from five independent experiments. An
asterisk indicates a significant difference (p < 0.05) compared
with control.
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FIG. 4. PQ induces extracellular O2
•� production in mi-

croglia. Primary microglia-enriched cultures were treated with
either vehicle, 100 ng/ml LPS, 0.5 µM PQ, or 1 µM PQ. LPS
was used as a positive control for microglial O2

•� production.
The production of extracellular O2

•� was measured by the
SOD-inhibitable reduction of tetrazolium salt, WST-1. The data
are expressed as the percentage of the control cultures and are
the means ± SEM from five independent experiments. An as-
terisk indicates a significant difference (p < 0.05) compared
with control.

FIG. 5. NADPH oxidase mediates PQ DA neurotoxicity.
PHOX�/� mice lack the functional catalytic subunit of the
NADPH oxidase complex, gp91, and fail to produce the phago-
cytic respiratory burst. Mesencephalic neuron-glia cultures
from PHOX�/� and PHOX+/+ mice were treated with either ve-
hicle, 5 ng/ml LPS, or 1 µM PQ. LPS was used as a positive
control for microglial NADPH oxidase activation. DA neuro-
toxicity was measured at 6–7 days post treatment using the
[3H]DA uptake assay. The data are expressed as the percentage
of the control cultures and are the means ± SEM from four in-
dependent experiments. An asterisk indicates a significant dif-
ference (p < 0.01) compared with control.

O2
•� production in enriched microglia (p < 0.05) (Fig. 4),

which suggests that extracellular O2
•� may be the main medi-

ator of the microglia-mediated neurotoxicity. Consistent with
previous reports (9, 33), LPS, as a positive control, was
shown to induce O2

•� production by microglia.

PQ-induced microglia-dependent neurotoxicity is
mediated by NADPH oxidase

NADPH oxidase has been documented as the predominant
source of extracellular O2

•� in phagocytic cells. PHOX�/� mice
lack the functional gp91 protein, the catalytic subunit of the
NADPH oxidase complex, and thus produce no extracellular
O2

•� in response to immunological stimuli. DA uptake was
compared between mesencephalic neuron-glia cultures from
PHOX�/� mice and PHOX+/+ mice. Figure 5 shows that
whereas DA neurons in PHOX+/+ cultures lost 36% of uptake
function after 7-day treatment with 1 µM PQ (p < 0.01), DA
neurons in PHOX�/� cultures were completely resistant to the
same dose of PQ. This suggests that, at 1 µM, PQ neurotoxicity
is mediated through NADPH oxidase and supports the impor-
tance of O2

•� in DA neurotoxicity. LPS was used as a positive
control for NADPH oxidase-mediated neurotoxicity, where
LPS showed less DA neurotoxicity in midbrain neuron-glia cul-
tures from PHOX�/� mice compared with PHOX+/+ mice (33).

DISCUSSION

Oxidative stress has been strongly linked to neurodegener-
ative disease, with particular emphasis on PD. Thus, the iden-
tification of multiple, potential triggers of oxidative insult in

the brain and the elucidation of corresponding mechanisms
are of paramount importance to both the understanding of
disease progression and the development of neuroprotective
compounds. In the present study, the neurotoxicity of PQ was
examined in mesencephalic neuron-glia cultures, where
0.5–1 µM PQ was shown to damage DA neurons in a dose-
dependent manner (Fig. 1) and to be selectively toxic to DA
neurons (Fig. 2). This is consistent with several previously re-
ported in vivo studies (25, 26, 39), supporting the notion that
PQ is indeed selectively toxic to DA neurons.

More interestingly, microglia were identified as the cell
type governing PQ toxicity at lower concentrations (0.5–1
µM). Originally, PQ was believed to be directly neurotoxic to
DA neurons due to the structural similarity to MPP+ and be-
cause both are actively taken into the DA neuron through the
DA transporter receptor (37, 38). Further, PQ is known to be
able to redox-cycle with various diaphorases (3–5, 7) and
oxygen to produce O2

•�. Thus, once inside the DA neurons,
PQ may induce an increase of intracellular ROS and conse-
quently damage the neurons. However, this study reports that
whereas higher concentrations of PQ may indeed be directly
toxic to DA neurons, lower concentrations (up to 1 µM) re-
quire the presence of microglia in order to be toxic (Fig. 3).
Microglia, the resident immune cells of the central nervous
system, have been shown to play an important role in LPS-
and rotenone-induced DA neuronal death, where microglial
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NADPH oxidase-derived O2
•� is the common mediator of cell

death (8, 10, 33). 
Similar to rotenone (40, 41), here we show that PQ acti-

vated microglia to produce ROS. The addition of PQ at any
dose to the midbrain neuron-glia cultures failed to result in
the production of soluble proinflammatory factors, a re-
sponse commonly reported in the traditional microglial proin-
flammatory response. However, PQ did induce the production
of extracellular O2

•� from microglia (Fig. 4), identifying mi-
croglia as an additional source of PQ-induced oxidative
stress. Although the exact species of ROS governing the neu-
rotoxicity is unknown, there is a well established association
between the microglial production of O2

•� and DA neurotoxi-
city (35, 40, 41).

DA neurons are known to be particularly vulnerable to ox-
idative insult due to a reduced antioxidant capacity, a high
content of iron and oxidation-prone DA, and a potential de-
fect in mitochondrial complex I (12, 13). Thus, any com-
pound inducing oxidative stress in the central nervous system
is a potential candidate for selective DA neurotoxicity. How-
ever, the existence of a class of agrochemicals (rotenone and
PQ) shown to induce oxidative stress at low concentrations
solely through the production of microglial O2

•� may provide
novel insight into the mechanism governing the selective de-
generation of DA neurons by brain region. Specifically, the
SN is reported to contain 4.5 times as many microglia, com-
pared with other regions of the brain (14), supporting the no-
tion that the DA neurons localized there could be preferen-
tially susceptible to microglia-mediated oxidative stress.

NADPH oxidase is the enzyme responsible for the mi-
croglial production of extracellular O2

•� in response to LPS
(35) and rotenone (40, 41). PHOX�/� mice are devoid of the
gp91 protein, catalytic subunit of NADPH oxidase complex,
and are unable to produce extracellular O2

•� in response to
stimuli. In this study, we show that neuron-glia cultures from
PHOX�/� mice were also insensitive to 1 µM PQ (Fig. 5),
suggesting that NADPH oxidase is critical for PQ-induced
neurotoxicity at lower concentrations. Current studies in our
laboratory are focused on identifying the mechanisms of how
PQ and rotenone activate NADPH oxidase in microglia.

In summary, we demonstrate that the selective DA neuro-
toxicity of lower concentrations (up to 1 µM) of PQ is still
mediated through the production of the O2

•� radical. How-
ever, we report that at lower concentrations, the source of PQ-
induced DA neurotoxic oxidative stress is initially extracellu-
lar and originates from the microglia, rather than from the
neuron itself. Further, this microglia-mediated neurotoxicity
is derived from the activation of NADPH oxidase. Together,
these data suggest an emerging class of environmental agents
(PQ and rotenone) that act at lower concentrations to provide
an indirect source of oxidative insult through microglia,
which is consequently selectively toxic to DA neurons.
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ABBREVIATIONS

DA, dopamine or dopaminergic; ELISA, enzyme-linked
immunosorbent assay; GABA, �-amino-n-butyric acid; HBSS,
Hanks’ balanced salt solution; LPS, lipopolysaccharide; MPP+,
1-methyl-4-phenylpyridinium; O2

•�, superoxide; PD, Parkin-
son’s disease; PQ, paraquat; ROS, reactive oxygen species;
SN, substantia nigra; SOD, superoxide dismutase; TH, tyro-
sine hydroxylase; TNF�, tumor necrosis factor-�.
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